Lesson 4.2 Using Similar shapes
Day 1
Teach objective and review unit "Reading strategies" and "Success for English learners"
Assignment - Guided practice and Independent practice completed as a class
Reading strategies answers

1. Because you are not actually measuring, but using proportions to find a missing measure
2. Substituting the lengths of the sides into the proportion
3. $18 / 6=\mathrm{y} / 5$

Success for English learners

1. Yes; because the triangles are similar, the sides are proportional.
2. Bigger; the length of the pool is greater than the length of the volleyball court. So if the 2 rectangles are similar, the width of the pool must also be greater than the width of the volleyball court.

Day 2
Review
Cooperative (elbow buddy)assignment 4.2 practice and problem solving: D
4.2 Practice and problem solving: A/B

Login to Go Math
Go to the Resources Tab
Click on the Student Online Edition (yellow open book)
This will take you to another window to an interactive student edition textbook.
Go to page 121
Answers to "reflect", Explore activity" and "your turn" questions
EA. $3,2,3,2,3,3,3,3,5,25$

1. AC over JL, because all sides are proportional
2. 59 degrees; 3 cm
3. 120 degrees; 150 cm
4. $36 / 54=\mathrm{x} / 42 ; 28 \mathrm{ft}$
5. $4 / 6=\mathrm{x} / 12 ; 8 \mathrm{ft}$
6. $1.5 / 6=4.5 / \mathrm{x} ; 18 \mathrm{ft}$

For answers to the guided practice and independent practice, see Coach Gammon.
Additional web sites
https://www.youtube.com/watch?v=1UuiF3mskQA
https://www.youtube.com/watch?v=z2Zk3nh9dVQ
Remember, on the online edition, you can click on the "math on the spot" for a little extra teaching from Prof Burger. If you only have your book, use a QR scanner on the "math on the spot"

Lesson 4-2

Using similar shapes to find Unknown Measurements
How can you use similar shapes to find unknown measures?

To find an unknown length: \qquad a using corresponding sides.

To find an unknown angle: \qquad it to the angle on the \qquad shape

What do the: following symbol represent?
$\triangle A B C$ -
$A B$

Vocab
—. The process of using similar shapes and proportions to find a measure.
2.

$$
y=\square \quad x=.
$$

\qquad
3.

$s=$ \qquad $t=$ \qquad

Lesson 4-2

Using similar shapes to find Unknown Measurements How can you use similar shapes to find unknown measures?

To find an unknown length: write a proportion using corresponding sides.

To find an unknown angle: compare it to the corresponding angle on the similar shape

What do the: following symbol represent?

$$
\begin{aligned}
& \triangle A B C \text { - tangle } A B C \\
& A B-\text { side } A B
\end{aligned}
$$

Vocab
indirect measurement The process of using similar shapes and proportions to find a measure.
2.

3.

$s=$ \qquad
\qquad Date \qquad Class \qquad

LESSON

Using Similar Shapes
 Reading Strategies: Use a Flowchart

It is very difficult to measure the height of tall tree or a utility pole directly. You can set up proportions to measure very tall objects indirectly.
This method of measuring is called indirect measurement. You do not actually measure the height. You use a proportion to find the height.

These two triangles are similar.
Find length x in triangle $D E F$.

The flowchart helps you set up a proportion to find the value of x.

Answer each question.

Write a proportion to find the missing length.

$$
18 \cdot x=6 \cdot 21
$$

Find the value of x.

$$
\begin{aligned}
\frac{18 x}{18} & =\frac{6 \cdot 21}{18} \\
x & =\frac{126}{18} \\
x & =7
\end{aligned}
$$

1. Why is this method called indirect measurement?
\qquad
\qquad
2. What is the next step after setting up the proportion?
\qquad
3. Write a proportion to find the length y in triangle $A B C$.
\qquad
\qquad

Lesson Using Similar Shapes

Success for English Learners

Problem 1

Identify the corresponding sides: $\triangle A B C \sim \triangle J K L$

To find x, you only need to use 2 of the 3 corresponding sides:

1. the side in question: $\overline{B C}$ and $\overline{K L}$.
2. 1 of the other 2 sides, either $\overline{A C}$ and $\overline{J L}$ or $\overline{A B}$ and $\overline{J K}$.

Problem 2

Write a proportion comparing the lengths and widths of the volleyball court and the pool.

$\frac{\text { Length of Volleyball Court }}{\text { Length of Pool }}=\frac{\text { Width of Volleyball Court }}{\text { Width of Pool }}$

$$
\frac{18}{50}=\frac{9}{w}
$$

1. If you use the sides $A C$ and $J L$ instead of $A B$ and $J K$ in Problem 1, would you get the same answer for x ? Explain your answer.
2. In Problem 2, do you expect the width of the swimming pool to be bigger or smaller than the width of the volleyball court? Why?
\qquad
\qquad
\qquad Date \qquad
\qquad

Lesson Using Similar Shapes

Practice and Problem Solving: D

The triangles in each pair are similar. Find the unknown measures.
The first one is done for you.
1.

2.

4.

The figures in each pair are similar. Find the unknown measures. The first one is done for you.
5.

6.

\qquad Date \qquad Class \qquad

$\underset{4-2}{\text { LEsson }}$ Using Similar Shapes

Practice and Problem Solving: A/B

The triangles in each pair are similar. Find the unknown measures.
1.

2.

The figures in each pair are similar. Find the unknown measures.
3. B

4.

Solve.

5. Lydia wants to find the height of a flagpole. She measures the height of a tree and the length of the shadow it casts. The tree is 4 feet tall, and its shadow is 8.8 feet long. Next, Lydia measures the shadow cast by the flagpole, and finds it is 22 feet long. What is the height of the flagpole?
6. Michael wants to find the length of the shadow of a tree. He measures the height of a fencepost and the length of the shadow it casts. The fencepost is 3.5 feet tall, and its shadow is 10.5 feet long. Next, Michael measures the height of the tree, and finds it is 6 feet tall. How long is the shadow of the tree?
